
ABEL’s Difficulty Smoothing Algorithm (DSA) -

Whitepaper

Abelian Foundation

July 12, 2024

1 Background

1.1 Original Adjustment Algorithm

When the Abelian network was first launched, its Proof-of-Work (PoW) diffi-
culty adjustment algorithm operated every 4000 blocks (we will refer to this as
an epoch). At the end of every epoch - specifically at block heights 4000, 8000,
12000, and so on, it would approximate the network’s mining power (hash rate)
and then scale the upcoming mining difficulty up or down, so that miners would
take an average of 256 seconds to mine a block in the next epoch.

In other words, the Abelian network aims to complete an epoch approximately
every 12 days. If the latest epoch took over 12 days to complete, the network
estimates the mining difficulty to be too high compared to the present hash rate,
thus the next epoch’s difficulty would be adjusted downwards. This would cause
miners to take less time in mining a block, reducing the upcoming epoch’s block
time. On the contrary, if the latest epoch took less than 12 days to complete,
the network would increase the upcoming epoch’s difficulty, causing miners to
take longer to mine each block and thereby increasing the epoch’s completion
time.

1



1.2 Limitations of Original Adjustment Algorithm

Up until June 2024, the Abelian network experienced significant fluctuations
in hash rate from epoch to epoch, whereby miners would cyclically join the
network during low-difficulty epochs and leave during high-difficulty epochs.
This is because miners would switch between mining Abelian and other GPU-
minable cryptocurrencies based on the networks’ difficulty levels to optimize
their mining profitability.

This cyclic mining behavior has caused drastic fluctuations in hash rates from
epoch to epoch, which in turn caused significant fluctuations between average
block times. For example, 2 epochs were completed in the period from April
25th to June 3rd, and the average block times in the first epoch were much
higher than 256 seconds (peaks at approximately 1300 seconds), whereas the
second epoch had a much lower average than 256 seconds (the minimum value
is approximately 80 seconds).

Figure 1: Average Block Time in the past 2 epochs

Such volatility is expected in a young PoW project, but it does pose some
challenges to the network:

• High Miner Influx
Block times would shorten, increasing the network’s throughput. However,
nodes with poor connection may struggle to synchronize, causing frequent
soft-forks and wasting computational power.

• High Miner Exodus
A drop in hash rate would result in an increase in a network’s block time,
thus increasing the network’s transaction time and impacting the net-
work’s usability.

To address these issues, the Abelian Foundation established a task force in
early 2024 to devise an improved difficulty adjustment algorithm, which will be
introduced in the following section.

2



2 Difficulty Smoothing Algorithm (DSA)

The team has devised DSA as the new and improved difficulty adjustment al-
gorithm.

2.1 How DSA Works

• Slot-based Adjustment
DSA adjusts the network difficulty every 200 blocks (we call this a slot).

• Weighted Average
DSA calculates the average block time for the latest 20 slots, and then com-
putes the weighted average, giving the more recent slots a higher weight.

• Adjustment Criteria
The upcoming slot’s difficulty is increased if the weighted average block
time is less than 256 seconds and is decreased if it is over 256 seconds.

2.2 Advantages of DSA

• Frequent Adjustment
By adjusting every 200 blocks instead of 4000 blocks, the difficulty is
updated approximately every 14 hours instead of 12 days.

• Enhanced Responsiveness
The use of a weighted average that prioritizes recent slots over older ones
ensures the network’s responsiveness and adaptability to rapid fluctuations
in the hash rate.

• Improved Stability
Simulations show that using DSA would cause the block time to quickly
converge and stabilize at the target of 256 seconds.

2.3 Software Updates

DSA has been in use since block height 284000, and users must upgrade their
software to at least v0.13.0 (Abec) or v4.0.0 (Desktop Wallet) or Abelian
Pro (Android & iOS) to use the network past this height. At present, all
mining pools, exchanges, and major individual Abelian nodes have completed
their upgrade process.

3



3 Technical Details

In this section, we will first give the definitions of some of the parameters used
by DSA before giving a summary of DSA. After that, we will show how DSA
works in-depth by demonstrating the calculation of bits and target for slot
284800-284999.

3.1 Parameters

The Abelian Explorer provides an API that we can use to query a block’s details.
For example, we can examine block 284800 at:

https://api.abelian.info/v1/block/284800

Let us examine the following parameters in particular:

time: 1718093710

bits: 1a69bad4

(seal)hash: 0000000000002169f2e9c6a24f6f2868a889abd194d28595b20d22bc766e5635

The time parameter refers to the time at which the block was mined (in Unix
timestamp). When converted to a human-readable format, we see that block
284800 was mined at 11 June 2024 08:15:10 (GMT).

The bits parameter represents the target parameter of a block in compact
form. We can convert bits to target like so:

1a69bad4

1a 69bad4

28(0x1a−3) 0x69bad4

28·(0x1a−3)· 0x69bad4

00000000000069bad40000000000000000000000000000000000000000000000

The target is an indicator of how small a block’s hash must be for it to be
valid. For example,

hash and target for block 284800, respectively:
0000000000002169f2e9c6a24f6f2868a889abd194d28595b20d22bc766e5635

<
00000000000069bad40000000000000000000000000000000000000000000000

4

https://api.abelian.info/v1/block/284800


When attempting to mine a block, a miner would first compute the hash value
of its header, and then check if it’s less than the block’s target. If the check
succeeds, they would have successfully mined a block.

Since the Abelian network uses a 256-bit hash, there are 2256 possible hash

values, and the miner succeeds in mining a block for target possible values.
This means the probability of successfully mining a block would be

p =
target

2256

and therefore the expected number of attempts until a miner succeeds would be

1

p
=

2256

target
≈ 2256

target+ 1
to avoid division by 0

We define work (for a single block) to be this number of expected attempts, and
we define the hash rate as the amount of work done per second (across the
entire network).

3.2 DSA Overview

At the end of each slot (every 200 blocks), DSA would first calculate a weighted
average hash rate over the past 20 slots (giving the more recent slots a higher
weight), then using the weighted hash rate to come up with a new target so
that the upcoming slot’s average block time would be 256 seconds, assuming
the next slot’s hash rate matches the predicted weighted hash rate.

First, given a target and slot time (number of seconds between the mining
time of the first and last block in the slot), we can calculate a slot’s hash rate

like so:

hash rate =
total work done

slot time

=
(work done per block) · (number of blocks per slot)

slot time

=

(
2256

target+1

)
· 199

slot time

Or equivalently,

hash rate =
total work done

slot time

=
(total work until slot’s last block)− (total work until slot’s first block)

(time of slot’s last block)− (time of slot’s first block)

5



Once we calculate the hash rate of the past 20 slots (hash ratei−20, hash
ratei−19, . . . , hash ratei−1), we then proceed with calculating the weighted
average hash rate:

αi =
1

400
+

i

200
for 0 ≤ i < 20

avg hash rate =

19∑
j=0

αi · hash rate(i−20)+j

We then compare the ratio between avg hash rate and the most recent slot’s
hash rate (hash ratei−1). If the ratio is below 1

4 or above 4, we clamp it
between these values.

Note: Assuming the hash rate of the next slot doesn’t change from the most
recent slot, and if the newly-calculated difficulty would increase the average
block time to over 4 · 256 = 1024 seconds, or decrease it to below 256

4 = 64
seconds, this would clamp the average block time between these values.

ratio =
avg hash rate

hash ratei−1

target hash rate =


4 · hash ratei−1 if 4 < ratio

avg hash rate if 1
4 ≤ ratio ≤ 4

1
4 · hash ratei−1 if ratio < 1

4

Finally, we ‘predict’ the next slot’s hash rate would be target hash rate, and
we would calculate the new target value accordingly. Given the relationship
between hash rate and target:

hash rate =

(
2256

target+1

)
· 199

slot time

We wish for the upcoming slot time to be 199 ·256 seconds, therefore our new
target would be:

target hash rate =

(
2256

target+1

)
· 199

199 · 256

=⇒ target =
2256

256 · target hash rate
− 1

And finally, we would convert our target into compact form as bits, and use
bits’s value in all future calculations and comparisons.

6



3.3 Illustrative Example

We demonstrate DSA by calculating the target for the slot 284800-284999.

First, we retrieve the parameters of the previous 20 slots from the Explorer’s
API and use them to calculate each slot’s hash rate. For example, we see that
slot 280800-280999 has the following parameters:

"bits":"1b00c247"

"time":1717092234 (Block 280800)

"time":1717110521 (Block 280999)

We convert bits into target:

target = 0x0c247 · 28·(0x1b−3)

And we calculate slot time:

slot time = 1717110521− 1717092234 = 18287

Once we have target and slot time, we calculate hash rate:

hash rate =

(
2256

(0x0c247·28·(0x1b−3))+1

)
· 199

18287
≈ 4036158491504

We repeat these steps for each of the past 20 slots:

Slot Blocks bits slot time hash rate

1st 280800-280999 1b00c247 18287 4036158491504
2nd 281000-281199 1b00c247 20504 3599747870373
3rd 281200-281399 1b00c247 20578 3586802912534
4th 281400-281599 1b00c247 20555 3590816362643
5th 281600-281799 1b00c247 20800 3548520689141
6th 281800-281999 1b00c247 22897 3223532791812
7th 282000-282199 1b00c247 17615 4190135131089
8th 282200-282399 1b00c247 23081 3197835030290
9th 282400-282599 1b00c247 19818 3724353130191
10th 282600-282799 1b00c247 20385 3620761851073
11th 282800-282999 1b00c247 22046 3347964725307
12th 283000-283199 1b00c247 20818 3545452509085
13th 283200-283399 1b00c247 21408 3447740579882
14th 283400-283599 1b00c247 23258 3173498595499
15th 283600-283799 1b00c247 16298 4528729312439
16th 283800-283999 1b00c247 21015 3512216527915

7



17th 284000-284199 1a4e4839 68246 2684065158980
18th 284200-284399 1a501029 168718 1061546137207
19th 284400-284599 1a55f13a 198210 841783374579
20th 284600-284799 1a5d1e3b 231375 665552551807

Table 1: Hash rates of the past 20 slots

Once we have the past 20 slots’ hash rates, we calculate the weighted avg hash

rate:

avg hash rate = α0·hash ratei−20+α1·hash ratei−19+· · ·+α19·hash ratei−1

Slot α hash rate α· hash rate

1st 0.0025 4036158491504 10090396228.7600
2nd 0.0075 3599747870373 26998109027.7975
3rd 0.0125 3586802912534 44835036406.6750
4th 0.0175 3590816362643 62839286346.2525
5th 0.0225 3548520689141 79841715505.6725
6th 0.0275 3223532791812 88647151774.8300
7th 0.0325 4190135131089 136179391760.3925
8th 0.0375 3197835030290 119918813635.8750
9th 0.0425 3724353130191 158285008033.1175
10th 0.0475 3620761851073 171986187925.9675
11th 0.0525 3347964725307 175768148078.6175
12th 0.0575 3545452509085 203863519272.3875
13th 0.0625 3447740579882 215483786242.6250
14th 0.0675 3173498595499 214211155196.1825
15th 0.0725 4528729312439 328332875151.8275
16th 0.0775 3512216527915 272196780913.4125
17th 0.0825 2684065158980 221435375615.8500
18th 0.0875 1061546137207 92885287005.6125
19th 0.0925 841783374579 77864962148.5575
20th 0.0975 665552551807 64891373801.1825
Total 2766554360071.5950

Table 2: Calculating the avg hash rate

We then compute the ratio:

ratio =
2766554360071.5950

665552551807
≈ 4.16

Since ratio = 4.16 > 4, we clamp target hash rate to 4 · hash ratei−1 =
2662210207228.

8



Finally, we can use target hash rate to compute the new target:

target =
2256

256 · 2662210207228
− 1

= 00000000000069bad4c31f3cc44ce91d9a9b6b3744a15dae9ee647cf1cddd557

Now that we have the target, we can find the bits value by repeatedly dividing
the mantissa by 256 and incrementing the exponent by 1 starting from 3, until
mantissa < 0x00800000.

mantissa exponent

00000000000069bad4c31f3cc44ce91d9a9b6b3744a15dae9ee647cf1cddd557 0x3
0000000000000069bad4c31f3cc44ce91d9a9b6b3744a15dae9ee647cf1cddd5 0x4
000000000000000069bad4c31f3cc44ce91d9a9b6b3744a15dae9ee647cf1cdd 0x5
00000000000000000069bad4c31f3cc44ce91d9a9b6b3744a15dae9ee647cf1c 0x6
0000000000000000000069bad4c31f3cc44ce91d9a9b6b3744a15dae9ee647cf 0x7
000000000000000000000069bad4c31f3cc44ce91d9a9b6b3744a15dae9ee647 0x8
00000000000000000000000069bad4c31f3cc44ce91d9a9b6b3744a15dae9ee6 0x9
0000000000000000000000000069bad4c31f3cc44ce91d9a9b6b3744a15dae9e 0xa
000000000000000000000000000069bad4c31f3cc44ce91d9a9b6b3744a15dae 0xb
00000000000000000000000000000069bad4c31f3cc44ce91d9a9b6b3744a15d 0xc
0000000000000000000000000000000069bad4c31f3cc44ce91d9a9b6b3744a1 0xd
000000000000000000000000000000000069bad4c31f3cc44ce91d9a9b6b3744 0xe
00000000000000000000000000000000000069bad4c31f3cc44ce91d9a9b6b37 0xf
0000000000000000000000000000000000000069bad4c31f3cc44ce91d9a9b6b 0x10
000000000000000000000000000000000000000069bad4c31f3cc44ce91d9a9b 0x11
00000000000000000000000000000000000000000069bad4c31f3cc44ce91d9a 0x12
0000000000000000000000000000000000000000000069bad4c31f3cc44ce91d 0x13
000000000000000000000000000000000000000000000069bad4c31f3cc44ce9 0x14
00000000000000000000000000000000000000000000000069bad4c31f3cc44c 0x15
0000000000000000000000000000000000000000000000000069bad4c31f3cc4 0x16
000000000000000000000000000000000000000000000000000069bad4c31f3c 0x17
00000000000000000000000000000000000000000000000000000069bad4c31f 0x18
0000000000000000000000000000000000000000000000000000000069bad4c3 0x19
000000000000000000000000000000000000000000000000000000000069bad4 0x1a

Table 3: Mantissa & Bits

We find the bits value to be 1a69bad4, and we will use the bits’s corresponding
target value in future calculations (for example, calculating the difficulty):

00000000000069bad40000000000000000000000000000000000000000000000

Note - we can calculate the difficulty value as shown in the Explorer’s API
like so:

difficulty =
M

target

9



where M is the maximum possible difficulty (whose bits is 1d017c38).

For example, for slot 284800-284999,

difficulty =
0x017c38 · 28·(0x1d−3)

00000000000069bad40000000000000000000000000000000000000000000000

≈ 235676.38093908

4 Effect on Network

Ever since the Abelian network started using DSA, the network block times
have quickly converged to around the target of 256 seconds per block.

From June 24th to July 5th (at the time of writing), we see that the average
block time doesn’t fluctuate much when compared to before, with the minimum
average block time being 166 seconds, and the maximum being 334 seconds.

Figure 2: Average Block Time; Obtained from https://www.abelpool.io/en

We conclude by claiming that DSA has achieved its goals in improving the
stability of the Abelian network, and in maintaining the average block time at
the target of 256 seconds.

10

https://www.abelpool.io/en

	Background
	Original Adjustment Algorithm
	Limitations of Original Adjustment Algorithm

	Difficulty Smoothing Algorithm (DSA)
	How DSA Works
	Advantages of DSA
	Software Updates

	Technical Details
	Parameters
	DSA Overview
	Illustrative Example

	Effect on Network

